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Abstract. All invariant functions of the coadjoint representation are determined for real solvable
Lie algebras of dimension six having a nilradical of dimension four. Many questions related to
the nature of these invariants are analysed. In particular, we derive the general type of functions
in terms of which all the invariants can be expressed, and give the characterization of all solvable
Lie algebras with Abelian nilradical that have no non-trivial invariants. The existence of Casimir
operators among these invariants is also investigated.

1. Introduction

Invariant functions of semisimple Lie algebras were determined long ago. Racah [1] pursuing
a work undertaken by H B G Casimir,B L V der Warden and some other physicists, was able
to give in the 1950s an explicit construction for the invariants of semisimple Lie algebras.
They are all polynomial and hence Casimir operators and their number equals the dimension
of the Cartan subalgebra. Moreover, they can all be chosen to be homogeneous symmetric
polynomials in their generators.

For solvable Lie algebras, neither the number of invariants, nor the specific type of
functions in terms of which they can be expressed is known. Some effort have been made
in this direction in recent literature, but they only led to a partial characterization of the
invariants for some families of solvable Lie algebras, including all solvable Lie algebras of
low dimension not exceeding five [2–4].

Invariants have been determined only for a small number of non-semisimple groups. They
are well known for groups such as the Poincaré group [5], the Euclidean group E(3) and the
Galilei group [6]. This determination has also been done for all subgroups of the Poincaré and
similitude groups of the four- and three-dimensional Minkowski space and for all subgroups of
theO(4, 1) de Sitter group, and the physical meaning of these invariants have been discussed
[7, 8].

The determination of the invariant functions of Lie algebras (or Lie groups equivalently) is
motivated by the important role played by these functions in physics, in representation theory
or in group analysis of differential equations [9–11]. In particular, Casimir invariants of Lie
algebras can be used to label irreducible representations [9]. In physics, invariant operators
of dynamical groups characterize specific properties of physical systems by providing mass
formulae and energy spectra [7, 8].

As regards the determination of the invariants of an arbitrary Lie algebra, and in the context
of all the results presently available on this question, the determination of the invariants of
solvable Lie algebras is the most needed. Indeed, the invariants of semisimple Lie algebras are
all known and on the strength of the Levi decomposition theorem, any finite-dimensional Lie
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algebra can be written as a semidirect sum of a solvable ideal and a semisimple subalgebra.
The great utility of non-polynomial invariants clearly appears, for example, in the study
of integrable Hamiltonian systems. Fomenko and Trofimov show in [10] that integrating
Hamiltonian systems on Lie algebras, most of which are required to be solvable, can be
reduced to solving a system of linear first-order partial differential equations (PDEs) of the
form

∑
k,j C

k
ij xj (∂F/∂xj ) = 0, i.e. to the determination of the invariants of the coadjoint

representation. Further discussion on the applications of the invariants of Lie groups can be
found in recent scientific literature close to mathematical physics [12–14].

In this paper we determine explicitly all invariant functions of the coadjoint representation
of all equivalence classes of indecomposable solvable and non-nilpotent Lie algebrasN6 of
dimension six overR, having a nilradical of dimension four. The list of all of these Lie algebras
was given recently by Turkowski [15] and consists of a total of 40 classes of Lie algebras. This
list completes the classification of all non-nilpotent solvable Lie algebras of dimension six
started by Mubarakzyanov [16]. Nilpotent Lie algebras of dimension six were classified by
Morozov [17]. Invariants of all real Lie algebras of dimension not exceeding five and of
nilpotent Lie algebras of dimension six were determined in [2]. Since the nilradicalM of
any solvable Lie algebraL must satisfy dimM > 1

2 dimL, for six-dimensional solvable Lie
algebras there are only four cases to consider: nilpotent six-dimensional algebras and solvable
Lie algebras that contain five-, four- and three-dimensional nilradicals. AlgebrasN6 that
possess five-dimensional nilradicals were classified by Mubarakzyanov [16] into 99 classes.
However, the determination of the invariants of these Lie algebras for which dimL/M = 1 is
simpler and particularly straightforward when the nilradical is Abelian. Furthermore, they are
likely to be similar to the invariants of five-dimensional solvable Lie algebras with nilradicals
of dimension four computed in [2]. AlgebrasN6 that contain three-dimensional nilradicals are
decomposable [16]. Consequently, we restrict our determination to solvable Lie algebrasN6

having a nilradical of dimension four.

2. Basic definitions and results

LetG be a connected Lie group and denote byL = L(G) its Lie algebra, and byL∗ the dual
space ofL.

Definition 1.

(a) The map

Ad∗:G→ GL(L∗): (Ad∗g f )(x) = f (Adg−1 x)

for all g ∈ G, f ∈ L∗ andx ∈ L is called the coadjoint representation of the Lie group
G.

(b) A function F ∈ C∞(L∗) is called an invariant of the coadjoint representation if
F(Ad∗g f ) = F(f ), for all g ∈ G andf ∈ L∗.

(c) A fundamental set of invariants ofL is a subset ofC∞(L∗) consisting of a maximal number
of functionally independent invariants ofL.

Let B = {V1, . . . , Vn} be a basis of the finite- andn-dimensional solvable Lie algebra
L, and let(v1, . . . , vn) be a coordinate system inL∗ associated with the dual basis ofB. Let
Ṽi = (Ad∗)∗(Vi) be the infinitesimal generator of the group action Ad∗ corresponding toVi,
where(Ad∗)∗ is the corresponding action ofL onL∗. We have,

Ṽi(f ) = (Ad∗)∗(Vi)(f ) = d

dt

∣∣∣∣
t=0

Ad∗exptV i f
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for all f ∈ L∗. The following result give some of the properties of the infinitesimal generators
of the coadjoint representation.

Theorem 1.

(a) A functionF ∈ C∞(L∗) is an invariant of the coadjoint representation if and only if

Ṽi · F = 0 for all i = 1, . . . , n (2.1)

(b) Ṽi = −
∑
j

∑
k

ckij vk
∂

∂vj
and [Ṽi , Ṽj ] =

∑
k

ckij Ṽk (2.2)

where[Vi, Vj ] =
∑

k c
k
ijVk, i.e. theckij ’s (i, j, k = 1, . . . , n) are the structure constants ofL.

The invariant functions of the coadjoint representation of a Lie algebra are commonly just
called invariants and we shall use these two terminologies interchangeably. It is also clear from
(2.1) and (2.2) that the invariants are given as solutions of a system of linear first-order partial
differential equations. This is indeed the method that we shall use for their determination and
it has been used by many other authors [2, 6, 18, 19].

For any matrixA = (a
j

k ) of an endomorphism of a vector spaceV overR, define the
vector field∂(A) onV ∗, the dual space ofV, by

∂(A) = −
n∑
j=1

(
n∑
j=1

a
j

k vk

)
∂vj

where(v1, . . . , vn) is a coordinate system onV ∗. Consequently, ifAu represents the matrix
of the adjoint operator AdVu (u = 1, . . . , n) of L, according to the form of the infinitesimal
generatorsṼu given by equation (2.2), we have∂(Au) = Ṽu and the invariants ofL are the
solutions to the system of differential equations

∂(Au) · F = 0 (i = 1, . . . , n).

The invariants ofL are thus completely determined by the matricesAu of the adjoint operators
of L.

Denote byS(L∗) andS = S(L) the symmetric algebras ofL∗ andL, respectively. They
are all isomorphic to the ringR[X1, . . . , Xn] of polynomials inn indeterminates overR, and
henceS(L∗) ' S. Consequently, a polynomial invariant can be viewed as a function onL,

and by extension invariants of the coadjoint representation are all seen as functions onL and
called generalized Casimir invariants. This means that in expression (2.2) of the infinitesimal
generators, we shall consider(v1, . . . , vn) as a coordinate system onL rather than onL∗. Let
A = A(L) denote the universal enveloping algebra ofL. Set

A
I = {u ∈ A: [Vi, u] = 0, ∀i}

SI = {p ∈ S: Ṽi(p) = 0, ∀i}.
ThenAI is the centre ofA, i.e. the set of all Casimir operators ofL, while SI is simply the
set of all polynomial invariants of the coadjoint representation. Since the algebrasA andS
are both the Nœtherian ring without divisors of zero, we can construct their quotient field
D(A) andD(S), respectively. The adjoint representation is then extended toD(A) by setting
[r1, r2] = r1r2 − r2r1 for all r1, r2 ∈ D(A). This allows us to define two new setsD(A)I and
D(S)I by

D(A)I = {u ∈ D(A): [Vi, u] = 0, ∀i}
D(S)I = {p ∈ D(S): Ṽi · p = 0, ∀i}.
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Definition 2. Elements ofD(A)I are called rational Casimir invariants.

It is clear that elements ofD(S)I are rational invariant functions of the coadjoint
representation. We also note thatD(A)I containsD(AI ), the quotient field ofAI , and thus it
contains all polynomial invariants and their quotients.

Theorem 2.

(a) The Abelian algebrasAI andSI are algebraically isomorphic.
(b) The fieldsD(S)I andD(A)I are algebraically isomorphic.

Part (a) of this theorem is a result of [20, 21], while part (b) is proven in [22]. It is part (a) of
this theorem that allows us to identify each polynomial invariant of the coadjoint representation
with a Casimir operator. Moreover, it implies that the transcendence degrees ofSI andAI over
R are identical, which means that the cardinalτ of a maximal set of algebraically independent
elements inSI is the same as forAI . Similarly, the cardinalτ ′ of a maximal set of algebraically
independent elements inD(S)I is the same as forD(A)I .

We return to the Lie algebraL itself and denote byML = (Mij

L ) the matrix representing
the commutator table ofL, i.e. having as entries the polynomial functionsMij

L =
∑

k c
k
ij vk.

LetR(L) = rank(ML) = Supv1,...,vn
rank(ckij vk).

Theorem 3. The maximal numberN of functionally independent invariants of the coadjoint
representation is given by the equalityN = dimL− R(L).

Proof. It is indeed well known [23] that the system of PDEs(∑
j

fij
∂

∂yj

)
·
F = 0 (i = 1, . . . , m)

where(y1, . . . , yn) is a system of local coordinates on then-dimensional manifoldM andfij
are differentiable functions onM has exactlyn−rank(fij ) functionally independent solutions.
According to theorem 1, the result follows by replacingM with L and eachfij with Mij

L . �
It is immediately obvious that since the rank of the skew-symmetric matrixML must

be even, we haveN ≡ dimL (mod 2), and thusN and dimL have the same parity. The
following result of [21] identifies those Lie algebras that have only polynomial invariants or
only rational invariants.

Theorem 4.

(a) If L is algebraic, thenτ ′ = dimL− R(L).
(b) If L is algebraic andD(A)I = D(AI ), thenτ = dimL− R(L).

In other words, invariants of algebraic Lie algebras can always all be chosen to be rational
functions, and if in additionD(A)I = D(AI ), i.e. if any rational Casimir invariant is the
quotient of two Casimir invariants, then all invariants ofL are polynomial functions. This
sufficient condition holds for any nilpotent Lie algebra [24] and for any semisimple Lie algebra
[25]. However, we cannot always find a fundamental set of invariants for nilpotent Lie algebras
which is also an integrity basis in the sense that any polynomial invariant can be expressed
as a polynomial function of them, as is the case for semisimple Lie algebras. Nevertheless,
we know that the invariants of nilpotent Lie algebras can all be chosen to be homogeneous
polynomials and consequently we shall only focus on non-nilpotent solvable Lie algebras.
Their invariants generally involve logarithmic terms or functions in arctan in a manner which
is not yet clearly specified [2, 3].



Invariants of solvable Lie algebras 2277

3. Determination of the invariants

Consider on the finite-dimensional non-nilpotent solvable Lie algebraL a vector space
decomposition of the form

L =M⊕ E (3.1)

whereM is the nilradical ofLandE is any complement subspace ofM inL. The generators of
the subspaceE are said to be linearly nil-independent, since no non-trivial linear combination
of them can be ad-nilpotent. Let

A = {N1, . . . , Nr;X1, . . . , Xk} (3.2)

be a basis ofL, where{N1, . . . , Nr} is a basis ofM and{X1, . . . , Xk} is a basis ofE. Thus
dimM = r and dimE = k. To this basis, we associate a coordinate system of the form

S = (n1, . . . , nr; x1, . . . , xk). (3.3)

If (v1, . . . , vn) is any coordinate system corresponding to a basis{V1, . . . , Vn} of L, by an
abuse of notation we set [vi, vj ] =

∑
k c

k
ij vk, where theckij ’s (i, j, k = 1, . . . , n) are as usual

the structure constants ofL in the given basis. In this case the infinitesimal generatorsṼi are
given by

Ṽi = −
∑
j

[vi, vj ]∂vj . (3.4)

Since [L,L] ⊂ M, it follows that in terms of the coordinate systems (3.3), [vi, vj ] =
fij (n1, . . . , nr) for all i, j = 1, . . . , n. Thusfij does not depend on thexj ’s, (j = 1, . . . , k).
This remark applies to the invariants ofL as well whenM is Abelian.

Theorem 5. With the notation of equations (3.2) and (3.3), ifM is Abelian, then for any
invariantF ofL,

∂xj · F = 0 (j = 1, . . . , k) (3.5)

so thatF = F(n1, . . . , nr). In particular, the invariants are all determined by the reduced
system of PDEs

X̃j · F = 0 (j = 1, . . . , k)

and their determination does not depend on the[E,E] type commutation relations.

This theorem significantly reduces the computation of the invariants and is proven in details
in [3] for complex Lie algebras and in [4] for any Lie algebra over a field of characteristic
zero. Denote byAu the matrix of adMXu, the restriction toM of the adjoint operator
adXu (u = 1, . . . , k). In our determination of the invariants we shall also be guided by
the following result of [4] related to their number.

Theorem 6.

(a) If all elements of{A1, . . . , Ak} are simultaneously triangularizable, thenN 6 r.
(b) If the nilradical is Abelian, thenN = 2r − n.
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Solutions to the system (2.1) of PDEs defining the invariants will be obtained by solving
the corresponding system of characteristic equations

dv1

fi1
= dv2

fi2
= · · · = dvn

fin
(i = 1, . . . , n)

wherefij = fij (n1, . . . , nr) = [vi, vj ], and by using at each step as new variables the elements
of the last fundamental set of invariants obtained. One example is treated in the next section.

Our determination of the invariants is based on the list of all equivalence classes of non-
nilpotent solvable Lie algebras of dimension six having a four-dimensional nilradical, recently
given by Turkowski [15]. This list completes the classification started by Mubarakzyanov
[16] of all solvable Lie algebras of dimension six. The classification of nilpotent Lie algebras
of dimension six was realized by Morozov [17], and their invariants are listed in [2]. In
our list of solvable Lie algebras, the algebraNαβ...

6j means thej th algebra of dimension six.
The superscripts, if any, give the values of the continuous parameters on which the algebra
depends. Restrictions on the range of the parameters are to avoid double counting and algebraic
decompositions. A similar notation has been used by other authors (see, e.g., [2, 15]).

4. Solvable Lie algebras with Abelian nilradicals

In keeping with the notation of the previous section, and as stipulated by theorem 5, all the
invariants are determined in the case of an Abelian nilradical by the reduced system of linear
first-order partial differential equations

X̃1 · F = 0 X̃2 · F = 0. (4.1)

In tables 1 and 2, we present the invariants of all non-nilpotent solvable Lie algebras of
dimension six having an Abelian nilradical, together with their commutation relations. There
are 27 of them, 18 of which have a centre of dimension zero. All of these Lie algebras depend
on one or more continuous parameters except for the algebrasN6,8, N6,18 andN6,24.

To illustrate the method of determination of the invariants that we apply here, we give the
solution to (4.1) for the algebraNαβ

6,16. The infinitesimal generators̃X1 andX̃2 have the form

X̃1 = −n2∂n1 − (αn3 + n4)∂n3 − (−n3 + αn4)∂n4 (4.2)

X̃2 = −n1∂n1 − n2∂n2 − βn3∂n3 − βn4∂n4. (4.3)

We readily note in this case that adMX2 = diag{1, 1, β, β} acts diagonally, which makes the
solutions toX̃2 · F = 0 relatively simple. The corresponding characteristic equation

dn1

n1
= dn2

n2
= dn3

βn3
= dn4

βn4

has the three functionally independent solutionsξ1 = n1/n2, ξ2 = nβ2/n3 andξ3 = n3/n4. We
haveX̃1(ξ1) = 1, X̃1(ξ2) = −ξ2[α + (1/ξ3)] andX̃1(ξ3) = 1 + ξ2

3 . Hence in terms of the new
variables{ξ1, ξ2, ξ3}, we have

X̃1 = ∂ξ1 − ξ2[α + (1/ξ3)]∂ξ2 + (1 + ξ2
3 )∂ξ3.

Solving the corresponding characteristic equation yields the two functionally independent
solutions

I1 = n1

n2
− arctan

n3

n4

I2 = α arctan
n3

n4
− 1

2
log(n2

3 + n2
4) + β logn2.
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Table 1. Invariants of solvable Lie algebras of dimension six that contain the Abelian nilradical of
dimension four and the centre of dimension zero.

Name Non-zero commutation relations Invariants

N
αβγ δ

6,1 [X1, N1] = αN1 [X2, N1] = βN1 I1 = nβ3nα4/n1

αβ 6= 0 [X1, N2] = γN2 [X2, N2] = δN2 I2 = n(βγ−δα)3 nα2/n
γ

1

γ 2 + δ2 6= 0 [X1, N4] = N4 [X2, N3] = N3

N
αβγ

6,2 [X1, N1] = α1N1 [X2, N1] = βN1 I1 = αn3/n4 + log(nβ4/n1)

α2 + β2 6= 0 [X1, N2] = N2 [X2, N2] = γN2 I2 = n3/n4 + log(nγ4 /n2)

[X1, N3] = N4 [X2, N3] = N3

[X2, N4] = N4

Nα
6,3 [X1, N1] = N1 [X2, N1] = αN1 +N2 I1 = n3/n4 − logn2

[X1, N2] = N2 [X2, N2] = αN2 I2 = n1/n2 − logn4

[X1, N3] = N4 [X2, N3] = N3

[X2, N4] = N4

N
αβ

6,4 [X1, N1] = N1 [X2, N1] = N2 I1 = α arctan(n1/n2)− logn4

α 6= 0 [X1, N2] = N2 [X2, N2] = −N1 I2 = β arctan(n1/n2) + 1
2 log(n2

1 + n2
2)− n3/n4

[X1, N3] = N4 [X2, N3] = αN3 + βN4

[X2, N4] = αN4

N
αβ

6,5 [X1, N1] = αN1 [X2, N1] = βN1 I1 = nβ2nα4/n1

α 6= 0 [X1, N3] = N3 +N4 [X2, N2] = N2 I2 = n3/n4 − logn4

[X1, N4] = N4

N
αβ

6,6 [X1, N1] = αN1 [X2, N1] = N1 +N2 I1 = logn4 − n3/n4 + β logn2/n
α
4

α2 + β2 6= 0 [X1, N2] = αN2 [X2, N2] = N2

[X1, N3] = N3 +N4 [X2, N3] = βN4 I2 = n1/n2 − logn2/n
α
4

[X1, N4] = N4

N
αβγ

6,7 [X1, N1] = αN1 [X2, N1] = γN1 +N2 I1 = logn4 + β arctan(n1/n2)− n3/n4

α2 + β2 6= 0 [X1, N2] = αN2 [X2, N2] = −N1 + γN2

[X1, N3] = N3 +N4 [X2, N3] = βN4 I2 = α logn4 + γ arctan(n1/n2)− 1
2 log(n2

1 + n2
2)

[X1, N4] = N4

N6,8 [X1, N1] = N1 [X2, N2] = N2 I1 = n3

n4
− logn4

[X1, N2] = N4 [X2, N3] = N3 +N4 I2 = n2

n4
− logn1

[X2, N4] = N4

Nα
6,9 [X1, N1] = N1 [X2, N2] = N2 +N3 I1 = n3

n4
− α logn4

[X1, N2] = N4 [X2, N3] = N3 + αN4 I2 =
2αn2n4 − n2

3

2n2
4

− α logn1

[X2, N4] = N4

It then follows from theorem 5 and part (a) of theorem 1 that{I1, I2} is a fundamental set
generating the invariants of the Lie algebraNαβ

6,16.
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Table 1. Continued.

Name Non-zero Commutation relations Invariants

N
αβ

6,10 [X1, N1] = αN1 [X2, N1] = N1 I1 =
n2

3

n2
4

− 2
n2

n4
+ logn2β

4

[X1, N2] = N2 + βN4 [X2, N2] = N3 I2 = n3

n4
+ log

nα4

n1

[X1, N3] = N3 [X2, N3] = N4

[X1, N4] =

Nα
6,11 [X1, N1] = N2 [X2, N1] = N1 I1 = n1

n2
− log

n4

nα2

[X1, N3] = N3 +N4 [X2, N1] = N2 I2 = n3

n4
− log

n4

nα2

[X1, N4] = N4 [X2, N3] = αN3

[X2, N4] = αN4

N
αβ

6,12 [X1, N1] = N1 +N2 [X2, N1] = αN2 +N3 − βN4 I1 = n2n3 − n1n4

n2
2 + n2

4

+ arctan
βn2 + αn4

αn2 + βn4

[X1, N2] = N2 [X2, N2] = N4 I2 = β log(n2
2 + n2

4)

[X1, N3] = N3 +N4 [X2, N3] = −N1 + βN2 + αN4 +2
α(n2n3 − n1n4)− β(n1n2 + n3n4)

n2
2 + n2

4

[X1, N4] = N4 [X2, N4] = −N2 if (α2 + β2) 6= 0

= log(n2
2 + n2

4) +
2(n1n2 + n3n4)

n2
2 + n2

4

if α2 + β2 = 0

N
αβγ δ

6,13 [X1, N1] = αN1 [X2, N2] = βN1 I1 = logn1 + (β − 1) logn3

α2 + β2 6= 0[X1, N2] = γN2 [X2, N2] = δN2 +α arctan
n3

n4
− β

2
log(n2

3 + n2
4)

[X1, N3] = N4 [X2, N3] = N3 I2 = logn2 + (δ − 1) logn3

[X2, N4] = N4 +γ arctan
n4

n3
− δ

2
log(n2

3 + n2
4)

N
αβγ

6,14 [X1, N1] = N1 [X2, N1] = βN1 I1 = α arctan
n4

n3
+ log(n1/n

β

2 )

αβ 6= 0 [X1, N3] = γN3 +N4 [X2, N1] = N2 I2 = γ arctan
n4

n3
+

1

2
log(n2

3 + n2
4)

[X1, N4] = −N3 + γN4

N
αβγ δ

6,15 [X1, N1] = N1 [X2, N1] = γN1 +N2 I1 = 2(αγ − δ) arctan
n1

n2
+ log

n2
3 + n2

4

(n2
1 + n2

2)
α

β 6= 0 [X1, N2] = N2 [X2, N2] = −N1 + γN2

[X1, N3] = αN3 + βN4 [X2, N3] = δN3 I2 = 2βγ arctan
n1

n2
− β log(n2

1 + n2
2)

[X1, N4] = −βN3 + αN4[X2, N4] = δN4

N
αβ

6,16 [X1, N1] = N2 [X2, N1] = N1 I1 = n1

n2
− arctan

n3

n4

[X1, N3] = αN3 +N4 [X2, N2] = N2 I2 = α arctan
n3

n4
− 1

2
log(n2

3 + n2
4) + β logn2

[X1, N4] = −N3 + αN4 [X2, N3] = βN3

[X2, N4] = βN4
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Table 1. Continued.

Name Non-zero commutation relations Invariants

Nα
6,17 [X1, N1] = αN1 +N2 [X2, N3] = N3 I1 = n1

n2
− arctan

n3

n4

[X1, N2] = αN2 [X2, N4] = N4 I2 = α n1

n2
− logn2

[X1, N3] = N4

[X1, N4] = −N3

N
αβγ

6,18 [X1, N1] = N2 [X2, N1] = N1 I1 = arctan
n4

n3
+ β arctan

n1

n2

β 6= 0 [X1, N2] = −N1 [X2, N2] = N2 I2 = 2α

β
arctan

n3

n4
+ log

(n2
1 + n2

2)
γ

n2
3 + n2

4

[X1, N3] = αN3 + βN4 [X2, N3] = γN3

[X1, N4] = −βN3 + αN4 [X2, N4] = γN4

N6,19 [X1, N1] = N2 +N3 [X2, N1] = N1 I1 = n1n3 + n2n4

n2
3 + n2

4

+ arctan
n4

n3

[X1, N2] = −N1 +N4 [X2, N2] = N2 I2 = n1n4 − n2n3

n2
3 + n2

4

[X1, N3] = N4 [X2, N3] = N3

[X1, N4] = −N3 [X2, N4] = N4

It appears from the tables that all solvable Lie algebras with Abelian nilradicals have
a fundamental set of invariants consisting of two functions. This is in accordance with
part (b) of theorem 6 which asserts that the number of invariants in such cases isN =
2r − n = 2. Now, denote byA2 the non-nilpotent solvable Lie algebra of dimension two
with commutation relations [X,N ] = N and byg the solvable algebra of dimension four
with structure [X1, N1] = N1, [X1, N2] = N1, [X2, N1] = −N2, [X2, N2] = N2, where
N1 andN2 are the generators of the corresponding nilradical. Then we have the following
characterization of solvable Lie algebras with Abelian nilradicals that admit no non-trivial
invariant function.

Theorem 7. LetL be the non-nilpotent solvable Lie algebra of dimensionn over a fieldK of
characteristic zero and having an Abelian nilradicalM of dimensionr.

(a) WhenK = C, thenL has no non-trivial invariant if and only if

L = rA2. (4.4)

(b) WhenK = R, thenL has no non-trivial invariant if and only if

L = sg⊕ (n− r − 2s)A2 (4.5)

wheres is the number of pairs of distinct complex conjugate roots ofL.

Proof. Clearly, all the Lie algebras of (4.4) and (4.5) have Abelian nilradicals and satisfy
the condition 2 dimM = dimL, and hence by part (b) of theorem 6 they have no non-
trivial invariant. Thus we only need to prove that if a solvable Lie algebra with Abelian
nilradical has no non-trivial invariant, then it is of the stated form. Since the nilradical
of L is Abelian, if L has no non-trivial invariant, then by part (b) of theorem 6 we must
have 2r = n. Moreover, the centreZ(L) of L has dimension zero and hence the condition
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Table 2. Invariants of solvable Lie algebras of dimension six that contain Abelian nilradical of
dimension four and the centre of dimension one.

Name Non-zero commutation relations Invariants

N
αβ

6,20 [X1, N2] = αN2 [X2, N2] = βN2 I1 = n1

α2 + β2 6= 0 [X1, N4] = N4 [X2, N3] = N3 I2 =
n
β

3n
α
4

n2

[X1, X2] = N1

Nα
6,21 [X1, N2] = N2 [X2, N2] = αN2 I1 = n1

[X1, N2] = N2 [X2, N2] = αN2 I2 = n3

n4
− logn2

[X1, X2] = N1 [X2, N4] = N4

Nαε
6,22 [X1, N1] = N1 [X2, N1] = αN1 I1 = n4

ε = 0, 1 [X1, N3] = N4 [X2, N2] = N2 I2 = n3

n4
+ log

nα2

n1

α2 + ε2 6= 0 [X1, X2] = εN3

Nαε
6,23 [X1, N1] = N1 [X2, N1] = N2 I1 = n4

ε = 0, 1 [X1, N2] = N2 [X2, N2] = −N1 I2 = n3

n4
− 1

2
log(n2

1 + n2
2)− α arctan

n1

n2

[X1, N3] = N4 [X2, N3] = αN4

[X1, X2] = εN3

N6,24 [X1, N3] = N3 +N4 [X2, N2] = N2 I1 = n1

[X1, N4] = N4 I2 = n3

n4
− logn4

[X1, X2] = N1

N
αβ

6,25 (∗) [X1, N2] = αN2 [X2, N1] = βN2 I1 = α arctan
n3

n4
− logn2

α2 + β2 6= 0 [X1, N3] = N4 [X2, N3] = N3 I2 = n1

n2
− β

2
log(n2

4 + n2
3)

[X1, N4] = −N3 [X2, N4] = N4

[X1, X2] = N1

Nα
6,26 [X1, N3] = αN3 +N4 [X2, N2] = N2 I1 = n1

[X1, N4] = −N3 + αN4 I2 = α arctan
n4

n3
+

1

2
log(n2

3 + n2
4)

[X1, X2] = N1

Nε
6,27 [X1, N1] = N2 [X2, N3] = N3 I1 = n2

ε = 0, 1 [X1, N3] = N4 [X2, N4] = N4 I2 = n1

n2
− arctan

n3

n4

[X1, N4] = −N3

[X1, X2] = εN1

dimM = 1
2[dimL+ dimZ(L)] holds. Consequently, whenK = C, theorem 2 of [16] asserts

thatL has the structure [Xi,Ni ] = Ni, [Ni,Nj ] = 0, [Xi,Xj ] ∈ Z(L) (i, j = 1, . . . , n− r).
That is,L = rA2, and this completes the proof of part (a). For part (b), whenK = R,
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theorem 3 of [16] asserts thatL containss subalgebras with the structure ofg and(n− r)−2s
non-nilpotent subalgebras with the structure ofA2, and the commutator [Xi,Xj ] of all linearly
nil-independent elements are in the centreZ(L). SinceZ(L) = {0}, this means thatL is of
the form given by (4.5), and this completes the proof of the theorem. �

The functions defining these invariants are far from being Casimir operators, since they
generally involve log- and arctan-type functions. The only cases in which they are rational occur
when both adMX1 and adMX2 act diagonally, and this only happens with the algebrasN

αβγ δ

6,1

andNαβ

6,20. However, these rational invariants can become polynomial for certain values of the

parameters on which these two Lie algebras depend. For instance,N
αβγ δ

6,1 has a fundamental
set consisting of Casimir operators if the sequence of numbers{α, β,−1} on one hand and
{βγ−δα, α,−γ }, on the other hand, are of the same signs. Thus the only possibilities where the
invariants can be chosen to be rational functions and eventually Casimir invariants correspond
to the case where the operators adMXu (u = 1, 2) are all diagonal. Conversely, when these
operators are all diagonal, the invariants can always be chosen to be rational functions by a
result of [3]. However, the question is still open as to whether in the general case of an Abelian
nilradical (withn = dimL arbitrary), a fundamental set consisting of rational functions can
occur only when the operators adMXu are all simultaneously diagonal, and if the corresponding
Lie algebra is algebraic as stipulated by the sufficient condition of theorem 4.

We also note from the tables that when the dimension of the centre is one, one of the two
invariants is always polynomial. This is obvious since the non-zero generator of the centre can
be identified with a Casimir operator. An exception apparently occurs with the Lie algebra
N
αβ

6,25. However, this in reality is not an exception as such, since we can easily verify that
this Lie algebra has rather a zero-dimensional centre. It is therefore by a simple mistake of
the author of [15] that this Lie algebra (indicated in the table with a (*)) is listed among the
solvable Lie algebras with a centre of dimension one.

5. Solvable Lie algebra with non-Abelian nilradicals

When the nilradical is not Abelian, it is necessary for the determination of the invariants
to solve for each Lie algebra the system of six equationsÑi · F = 0 (i = 1, . . . ,4) and
X̃j · F = 0 (j = 1, 2). However, most of these equations generally degenerate into trivial
equations, or simple conditions, and the reduced system obtained is solved with the method
presented in the previous section.

There are 13 non-nilpotent solvable Lie algebras with non-Abelian nilradicals in the
classification of [15]. Of these Lie algebras, eight have no invariants while the remaining
five of them have two invariants each. We remark that the number 2 appears to be an upper
bound for the number of invariants. However, it is easy to see that in all these cases, the matrices
of the operators adMX1, adMX2, can be simultaneous put into a triangular form, so that the
upper bound obtained can been seen as an immediate application of part (a) of theorem 6 which
asserts that the maximal number of functionally independent invariants cannot exceed four,
the dimension of the nilradical. It would be useful to characterize all of those solvable Lie
algebras with non-Abelian nilradicals that do not have non-trivial invariants functions, as we
did in theorem 7 for the case of Abelian nilradicals. It is worth remarking that in contrast to
the case of non-nilpotent solvable Lie algebras, the number of invariants of semisimple and
nilpotent Lie algebras is always non-zero. Indeed, for semisimple Lie algebras this number is
the dimension of the Cartan subalgebra, which in this case corresponds to the maximal toral
subalgebra. Therefore, this number is always non-zero on any field of characteristic zero [9].
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Table 3. Invariants of real solvable Lie algebra that contains the non-Abelian nilradicalA3,1⊕A1
and the centre of dimension zero.

Name Non-zero Commutation relations Invariants

N
α,β

6,29 [N2, N3] = N1 [X1, N2] = N2 None

α2 + β2 6== 0 [X1, N1] = N1 [X2, N1] = N1

[X2, N1] = N1 [X1, N4] = αN4

[X2, N4] = βN4

Nα
6,30 [N2, N3] = N1 [X1, N2] = N2 None

[X1, N1] = 2N1 [X2, N2] = N3

[X1, N4] = αN4 [X1, N3] = N3

[X2, N4] = N4

N6,31 [N2, N3] = N1 [X1, N3] = −N3 I1 = x1 +
n2n3

n1

[X1, N2] = N2 [X2, N4] = N1 +N4 I2 = n4

n1
− logn1

[X2, N3] = N3 [X2, N1] = N1

Nα
6,32 [N2, N3] = N1 [X1, N2] = N2 None

[X1, N4] = N1 [X2, N1] = N1

[X2, N3] = (1− α)N3 [X2, N4] = N4

[X1, N3] = −N3 [X2, N2] = αN2

N6,33 [N2, N3] = N1 [X1, N2] = N2 None

[X1, N1] = N1 [X2, N4] = N4

[X2, N3] = N3 +N4 [X2, N1] = N1

Nα
6,34 [N2, N3] = N1 [X1, N1] = N1 None

[X1, N3] = N4 [X2, N1] = (1 +α)N1

[X2, N2] = αN2 [X2, N3] = N3

[X1, N2] = N2 [X2, N4] = N4

N
αβ

6,35 [N2, N3] = N1 [X1, N2] = N3 None

α + β 6= 0 [X1, N4] = αn4 [X2, N1] = 2N1

[X2, N3] = N3 [X2, N4] = βN4

[X1, N3] = −N2 [X2, N2] = N2

N6,36 [N2, N3] = N1 [X1, N2] = N3 I1 =
n2

2 + n2
3

n1
+ 2x1

[X2, N1] = 2N1 [X2, N2] = N2 I2 = 2n4

n1
− logn1

[X2, N4] = N1 + 2N4 [X1, N3] = −N2

[X2, N3] = N3

Nα
6,37 [N2, N3] = N1 [X1, N3] = −N2 None

[X1, N2] = N3 [X2, N2] = N2 + αN3

[X2, N1] = 2N1 [X2, N4] = 2N4

[X2, N3] = −αN2 +N3 [X1, N4] = N1
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Table 4. Invariants of real solvable Lie algebra that contains the non-Abelian nilradicalA3,1⊕A1
and the centre of dimension one.

Name Non-zero commutation relations Invariants

N6,38 [N2, N3] = N1 [X2, N1] = N1 I1 = n4

[X1, N1] = N1 [X2, N3] = N3 I2 = n2n3 − n1(x1 − x2)

n1n4
+ logn1

[X1, N2] = N2 [X1, X2] = N4

N6,39 [N2, N3] = N1 [X1, N2] = N3 I1 = n4

[X2, N1] = 2N1 [X2, N2] = N2 I2 =
n2

2 + n2
3 + 2n1x1

n1n4
+ logn1

[X1, X2] = N4 [X1, N3] = −N2

[X2, N3] = N3

N6,40 [N2, N3] = N1 [X1, N2] = N3 I1 = n1

[N2, N4] = N4 [X1, X2] = N1 I2 = 1

2n2
1

(n2
2 + n2

3 + 2n1x1) + logn4

[X1, N3] = −N2

Table 5. Invariants of real solvable Lie algebra that contains the non-Abelian nilradicalA4,1.

Name Non-zero commutation relations Invariants

N6,28 [N2, N4] = N1 [N3, N4] = N2 None

[X1, N1] = N1 [X1, N3] = −N3

[X2, N2] = N2 [X2, N3] = 2N3

[X1, N4] = N4 [X2, N4] = −N4

For nilpotent Lie algebras, this result is the consequence of the fact that the algebra always
possesses a non-zero centre.

There is no algebra in tables 3–5 that have a fundamental set of invariants consisting
of only polynomial or even rational invariants. However, this cannot be perceived as some
characteristic of solvable Lie algebras with non-Abelian nilradicals. Consider, for example, the
four-dimensional algebraA4,8 of [2] with commutation relations [N2, N3] = N1, [N2, X1] =
N2, [N3, X1] = −N3. This is clearly a non-nilpotent solvable Lie algebra having the non-
Abelian nilradicalM = 〈N1, N2, N3〉. It has a fundamental set of invariants consisting of the
two polynomialsn1 andn2n3−n1x1. The same counter-example holds with the non-nilpotent
solvable Lie algebrasA4,10, A5,22 andA5,29 of the same reference that all have non-Abelian
nilradicals and yet a fundamental set consisting of polynomial invariants. This shows that the
property for a solvable Lie algebra to possess a fundamental set of invariants consisting of
Casimir operators is independent of the Abelian attribute of its nilradical.

6. Concluding remarks

By determining the invariants of all non-nilpotent solvable Lie algebras of dimension six
having a nilradical of dimension four, we have answered in the actual context of all information
available on solvable Lie algebras, the natural question of what the invariants of solvable Lie
algebras of higher dimensions look like and how they agree with the known theorems on the
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invariant functions. We have not given the invariants for the 99 classes of solvable Lie algebras
of dimension six with nilradicals of dimension five listed in [16]. However, we feel that this
case for which dimL/M = 1 is simpler and the corresponding invariants are quite similar to
that of solvable Lie algebras of dimension five with nilradicals of dimension four computed
in [2]. In particular, when the nilradical is Abelian, all invariants are determined by the sole
operator adMX1 and this determination is straightforward since the latter operator can be put,
for example, into its Jordan canonical form. The resulting form of the invariants is given in
[3].

As for the type of functions in terms of which they can be expressed, all the invariants that
we have determined can be put into two categories. Indeed, in terms of the usual coordinate
functions(v1, . . . , vn), all the invariants in the case of non-Abelian nilradical have the form

F = P

Q
+ logv

αi1
i1
. . . v

αip
ip

+ arctan
L1(vs1, vs2)

L2(vt1, vt2)
+ log(vk2

1
+ vk2

2
)a(v2

g1
+ v2

g2
)b (6.1)

whereP is a homogeneous polynomial andQ is a monomial of the same degree asP or of zero
degree, andαi1, . . . , αip (p 6 n) anda, b are elements of{0, 1, α1, . . . , αt ,−α1, . . . ,−αt },
whereα1, . . . , αt denote thet parameters on which the Lie algebra depend;L1 andL2 are
linear functions and(i1, . . . , ip; s1, s2; t1, t2, k1, k2, g1, g2 ∈ {1, . . . , n}). For solvable Lie
algebras with non-Abelian nilradicals, the functions are simpler and equation (6.1) expressing
the general form of the invariants is reduced to

F = P

Q
+ ε logvs (ε = 0 or 1; s ∈ {1, . . . , n}). (6.2)

It is not surprising that the invariants of real solvable Lie algebras involve more complicated
functions than those corresponding to complex solvable Lie algebras computed, for example,
in [3] and whose general form is similar to that given by (6.2). Indeed, all real matrices of the
operators adMXu that give rise to invariant functions of arctan type or to functions in

log(v2
k1

+ v2
k2
)a(v2

g1
+ v2

g2
)b

triangularize overC to give simpler functions of the formP/Q + logvα1
i1
. . . v

αp
ip

.
The number of invariants for each Lie algebra in our tables is either zero or two. This

agrees perfectly with theorem 6. However, we still need to find a characterization of all non-
nilpotent solvable Lie algebras with non-Abelian nilradicals that have no non-trivial invariant.
We have given this characterization in theorem 7 only for solvable Lie algebras with Abelian
nilradicals.

Although it is true for all non-nilpotent Lie algebras with Abelian nilradicals for which
the invariants have been computed—and including all those studied in [2, 3]—that Casimir
operators may occur only if the operators adMXu act diagonally, we have shown by many
examples that the existence of a fundamental set of invariants consisting of Casimir operators
is not related to any Abelian property of the nilradical. It would be desirable to establish a link
between the number of functionally independent Casimir invariants of solvable Lie algebras
with the dimension of their Cartan subalgebras, an analogue of the result of Racah [1] for
semisimple Lie algebras.
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